
Spectrum Analysis

CANBERRA offers a variety of nuclear systems which perform data 
analysis as well as data acquisition. These systems range from 
small stand alone systems to more sophisticated configurations 
involving a variety of computer platforms. Typical applications 
include Environmental Monitoring, Body Burden Analysis, Nuclear 
Waste Assay, Safeguards and other applications. Details of these 
systems are provided later in this catalog, or in various brochures 
that are available from CANBERRA. The following section presents 
some of the typical procedures and calculations involved in nuclear  
applications.

COUNTING STATISTICS
Radioactive decay occurs randomly in time, so the measurement of 
the number of events detected in a given time period is never exact, 
but represents an average value with some uncertainty. Better 
average values can be obtained by acquiring data over longer time 
periods. But, since this is not always possible, it is necessary to be 
able to estimate the accuracy of any given average.

Nuclear events follow a Poisson distribution which is the limiting 
case of a binomial distribution for an infinite number of time intervals, 
and closely resembles a Gaussian distribution when the number of 
observed events is large. The Poisson distribution for observing N 
events when the average is N, is given by:

 
    PN =

and has standard deviation s (sigma) equal to √N. A graph of PN 
for N equal to 3 and to 10 is shown in Figure 1.44. The curves 
are asymmetric and have the property that N is not exactly the 
most probable value but is close to it. However, as N increases 
the curve becomes more symmetric, and approaches the Gaussian 
distribution:

    PN =		 • e–x2 / 2N = 	 • e–x / 2s2

Where: x = N – N

The integral of the area under the Gaussian curve is often used to 
report errors in terms of a confidence level in percent. For example, 
in the value reported as 64 ± 8, 8 is equal to s and represents 
68% of the area under the appropriate Gaussian curve for N=64. 
It may be stated as the value one is 68% confident of obtaining if 
the measurement is repeated. Traditionally, many of CANBERRA’s 
MCAs have used 1.65 s, which corresponds to a 90% confidence 
level. Probable error is often used, which corresponds to a 50% 
confidence level. These can be user-set to other values, such as:
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Figure 1.44 Poisson Distributions for N=3 and 10
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Since the uncertainty depends upon the square root of the counts, 
improvements in accuracy by counting longer, or by using a more 
efficient detector, only increase as the square root. For example, if 
564 counts are obtained in an hour for σ ≈ √564 ≈ 24 for a 24/564 
= 4.3% accuracy, counting for two hours to get 1133 counts with σ 
≈ 34 only gives an improvement to 3.0%. In other words, counting 
twice as long gives an improvement of √2 = 1.4, or 40%.

Examples of data in which counting statistics apply include: the 
counts in a counter, the counts in a single channel of an MCA 
spectrum, or the sum of counts in a group of channels in an MCA 
spectrum. The situation becomes even more complicated when 
subtracting a background as shown in the following separate, but 
frequent, cases.

	 •	 Subtracting background counts, as in one counter’s value 
from another, or for each channel (when subtracting one 
spectrum from another).

	 •	 Subtracting a straight line background from a peak on top of 
the background in a spectrum, such as a HPGe peak on top 
of Compton pulses from higher energy gamma rays.

The error in adding or subtracting two Poisson distributed numbers 
with errors, as in:

    Ntotal = (N1 ± √N1) ± (N2 ± √N2)

is given by:

    σNtotal 
= √(√N1)2 + (√N2)2

Consider a low level counting situation in which 56 counts are 
obtained in 10 minutes, and a background of 38 counts in 10 
minutes was measured without the sample. The result is 56–38 = 
18 counts, with an error of √56 + 38 = √94  =  or approximately 9.7, 
a σ value of 54%.

A better procedure is to measure the background over a longer 
period of time to obtain a small percentage error and factor to 
the appropriate time for each sample analyzed. Using the same 
example as above, but with a 100 minute background of 380 counts, 
the result would be 56–(380/10) = 18 counts, with an error of

    √56 + ([10/100]2 x 380) = √56 + 38 = √59.8
 
or approximately 7.7, a σ value of 43%.

NET AREA CALCULATION
For the case in which a peak lies on a background that cannot be 
subtracted by a background spectrum, such as shown in Figure 
1.45 for an MCA spectrum from a HPGe detector:

The area above the background represents the total counts between 
the vertical lines minus the trapezoidal area below the horizontal 
line. If the total counts are P and the end-points of the horizontal line 
are B1 and B2, then the net area is given by:
 
    A = P –   (B1 + B2)

Where: n = The number of channels between B1 and B2.

It is tempting to calculate the uncertainty by just using the formula 
for subtracting two numbers, with standard deviations of:

    σN = √P +   (B1 + B2)

However, this is incorrect because the trapezoidal area is not 
Poisson distributed and its error is not just the square root of the 
counts, but depends upon how the errors in B1 and B2 affect the 
horizontal line across the entire region. The proper procedure, 
which is implemented in CANBERRA MCAs and in analysis of peak 
areas in various HPGe software packages, is derived as follows:

The standard deviation in a function A is given by:

    A = f (N1 N2 ... Nn)
 
where Nn is the counts in channel N.

Figure 1.45 Net Area Determination
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The estimate of the standard deviation in A is given by:
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Where P1...Pn are the channels in the peak (inside B1 and B2) not 
including the channels with contents of B1 and B2.

END-POINT AVERAGING
If the background is large compared to the peak area, a better  
determination of background can be made by averaging over 
several channels. If B1 is an average over n1 channels, and B2 over 
n2 channels, the area is then:

    A = P –        + 

 
and the standard deviation is:

    σ(A) =   P +    
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Most CANBERRA MCAs and analysis software packages perform 
end-point averaging with a user-selectable number of end-points.

There are many ways of calculating the net counts under a peak. 
The method described above is a valid, common method, provided 
that there are no interferences from photopeaks adjacent to the 
peak of interest, and assuming that the background continuum 
varies linearly from one side of the peak to the other.

However, if interferences exist, other methods of calculating the 
net area of a peak must be employed which can include, (but are 
not limited to), the use of parabolic or step background algorithms, 
as well as non-linear fitting algorithms, etc. For further discussions 
concerning these techniques and others, the reader is referred to 
more detailed texts and formal spectroscopy training courses.

ENERGY CALIBRATION
Many nuclear applications require a means for determining the 
energy at a particular channel location of a spectrum. To meet this 
need, CANBERRA has implemented various techniques which are 
briefly discussed.

In some MCAs, a simple two-point energy calibration is used to  
determine both the offset and slope by the equation:

E = A (ch) + B

Where: ch = channel number

Thus, the energy vs. channel number can be directly read out. 
However, the more advanced MCA Systems, such as those based 
on Genie™ 2000 or Apex-Gamma™, allow users to choose 
between first-order (i.e. linear) or second-order (i.e. quadratic) 
equations that use a least squares fit to multiple data points.

Most preamplifier, amplifier and ADC systems are very linear 
and first-order energy calibration can properly describe the data. 
For example, a CANBERRA germanium detector with 2002 
Preamplifier, 2025 Amplifier and 8701 ADC has nonlinearities less 
than 0.05% for the preamplifier and amplifier, and 0.025% for the 
ADC. The combined nonlinearity is then:

±  √(0.05%)2 + (0.05%)2 + (0.025%)2  = ±0.075%

This is still a very small number, but for a spectrum of 4000 
channels, the low and high energy channels may be correct and 
leave a 0.00075 x 2000 = 1.5 channel uncertainty at channel 2000. 
A second-order term in the energy calibration can remove this in 
order to provide very accurate energy-channel calibration over the 
entire range, according to the equation:

E = A(ch)2 + B(ch) + C

Where: ch = channel number

A further refinement is provided by using least-squares techniques 
to determine the equation that best fits the data, when more than 
the minimum number of points is available, (2 for first-order, 3 for 
second-order). The Genie 2000 and Apex-Gamma MCA Systems 
use this technique.

NUCLIDE IDENTIFICATION AND QUANTITATIVE ANALYSIS
Many applications with high purity germanium (HPGe) detector 
spectra involve identifying particular gamma rays with specific 
nuclides. The sharp peaks in the HPGe spectra, coupled with a 
careful precise energy calibration, can be used for generally unique 
determinations of the nuclides in a sample. If an automatic peak 

search capability is provided then a complete sample analysis 
can be accomplished without operator intervention, which is ideal 
for analyzing large numbers of samples. All CANBERRA HPGe/
computer-based gamma spectroscopy systems provide nuclide 
identification through peak searches of spectra and scans of 
standard and user-generated nuclide libraries. A sample printout of 
a Genie 2000 nuclide identification report is shown in Figure 1.46.

In the Genie software platforms, the peak search locates peak 
centroids and then enters a region of interest about each peak. 
This is especially useful for observing the quality of data obtained. 
CANBERRA analysis software provides the additional capability of 
resolving overlapping peaks into individual components.

Figure 1.46 Isotope ID

Figure 1.47 88Y Decay Scheme



The final step in nuclide analysis is to determine the intensity of 
the radioactivity corresponding to each isotope. The net area of 
the peak is directly related to the intensity, but it is also necessary 
to correct for the efficiency of the detector, the branching ratio of 
the source, and the half life (if it is desired to relate the activity 
to an earlier or later time). The efficiency was discussed earlier 
and has an energy dependence such as shown in Figure 1.1. The 
branching ratio (or yield) is used to correct the number of gamma 
rays observed to obtain the number of disintegrations of the source. 
Figure 1.47 shows the decay scheme for 88Y and the percent of 
disintegrations leading to the various gamma rays.

The activity of a particular isotope is given in microcuries as: 

    A(µCi) = 

Where yield is the branching ratio fraction and live time is the 
actual ADC live time in seconds. Half-life corrections are made by 
multiplying the activity by an exponential factor.

    A(at time to) = Ae

Where decay time and half-life must be in the same units (seconds, 
minutes, hours, or years).

Further specific data analysis is highly dependent upon the 
application, detector and electronics configuration, and is beyond 
the scope of this brief presentation.

EFFICIENCY CALIBRATION
In the equation for activity cited above, the value for efficiency 
is dependent on the geometry of the sample – size, density, and 
distance from detector. For the detectors used in gamma analysis, 
efficiency varies significantly with energy (see Figure  1.1). 
Therefore, each counting geometry requires an efficiency 
calibration, using a known standard in the same geometry which 
includes multiple energies. A series of data pairs of efficiency vs. 
energy are generated from the relationship:

    Efficiency = 

Where Activity is the strength (in Bq) of the standard source (at 
collection time) at the given energy, yield is the branching ratio 
fraction and live time is the actual ADC live time in seconds.

In the Genie software system, the calibration data from the standard 
are entered into a “Certificate File”, with these data being used for 
subsequent efficiency calibrations. The software will automatically 
correct for source decay by the formula:

    A(at count time) = A(at certificate time)e –

Where decay time and half-life are in the same units (seconds, 
minutes, hours, or years).

In(2)xDecay Time
Half Life

Net Area

(Live Time)(Activity)(Yield)

In(2)xDecay Time
Half Life

CANBERRA offers Mathematical Efficiency Calibration products 
(S573, S574) that do not require radioactive sources for efficiency 
calibrations. These products (ISOCS™, LabSOCS™) rely on 
fundamental physical measurements and nuclear constants to 
accurately determine the energy-efficiency pairs.

From the series of data pairs, a curve of efficiency versus energy is 
generated, with the user having a choice of fitting paradigms. Thus, 
the software can calculate efficiency at any energy in the calibrated 
energy range when analyzing an unknown spectrum.

MINIMUM DETECTABLE ACTIVITY
The calculation of Minimum Detectable Activity for a given nuclide, 
at the 95% confidence level, is usually based on Currie’s derivation 
(Currie, L.A. (1968) Anal. Chem. 40:586.), with one simplified 
formulation being:

    MDA(Bq/unit wt) =

where

	σ  is the standard deviation of the background collected during 
time 

	 T over the energy range of interest

	 T is the collect time (sec)

	 EFF is the efficiency at the energy of interest

	 Y is the Branching Ratio

	 wt is sample weight

This formulation takes into account both kinds of errors – false 
positive and false negative, and yields the smallest level of activity 
which can be detected with 95% confidence, while also having 95% 
confidence that “activity” is not detected falsely from a null sample. 
When the measurement is made on a ‘blank’, with no activity, but with 
the same form and density as an actual sample, the calculated MDA 
is an a priori estimate of the best sensitivity that can be expected 
from sample measurements. When the calculation is applied to a 
spectrum collected from an actual sample, the background at the 
energy of interest will in most cases be higher, due to interference 
and Compton scattering from other nuclides in the sample. Thus, the 
MDA for an actual sample, computed a posteriori, will be somewhat 
higher than the a priori estimate.

The MDA – also referred to as Lower Limit of Detection (LLD) – can 
be improved by increasing the efficiency of detection, decreasing 
the background, or, for a given experimental setup, by increasing 
the collect time or the sample size. It is frequently necessary to  
select the appropriate collect time to ensure that the measured 
MDA will be below the action level mandated by the count-room 
procedures.

The above formula for MDA, generally accepted in the United States 
and many other countries, is implemented in a more complete form 
in CANBERRA Analytical software. Some CANBERRA software 
packages, such as Genie 2000, offer the user a choice of additional 
formulas required in other countries.

2.71 + 4.66(σ)

T • EFF • Y • wt

Net Area

(Live Time)(Efficiency)(Yield)(3.7x104)
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