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ABSTRACT 
 
 
The non destructive assay of special nuclear materials in 
storage containers or as waste items often calls for the full 
energy peak efficiency to be estimated in geometries which 
may be adequately described by the far field approximation.  
The principle energy range of interest for materials such as Pu 
+ 241Am and HEU is below 500 keV.  Small volume LEGe 
detectors were once required for such applications where high 
resolution was needed to extract information from the complex 
spectral regions.  Recently, large volume planar detectors called 
Broad Energy Ge (BEGe) detectors have become available.  
BEGe detectors offer high resolution at low energy, as with 
LEGe detectors, but with higher efficiency based on greater 
solid angle and thickness.  However, significantly changing 
detector dimensions requires an examination of the adequacy of 
functions used to estimate and trend efficiencies.  In this work 
we discuss how the full energy peak efficiency of such planar 
detectors may be estimated simply from the crystal and 
encapsulation dimensions.  A new semi-empirical formula is 
presented for the calculation and parameterization of the 
characteristic far field full energy peak efficiency for energies 
below the pair production threshold.  The formula is an 
extension of the any interaction model with allowance for the 
escape of fluorescent x-rays and secondary scattered radiation.  
A database of sixteen such planar detectors with a wide variety 
of dimensions, covering volumes from ~8 to ~150 cm3, is used 
to validate and verify the method.  In principal, this simple and 
quick to apply method is absolute given accurate dimensions of 
the active volume, thickness of any frontal dead layer and 
details of the end cap.  Alternatively it can be used as a fitting 
function to interpolate or extrapolate experimental data.  The 
results show that under the conditions examined, the formula is 
capable of reproducing measured efficiencies to within a few 
percent over the energy range of interest.   
 
 

INTRODUCTION 
 
 
The non destructive assay of SNM in storage containers or as 
waste items often calls for the full energy peak (FEP) efficiency 
to be estimated in geometries which may be adequately 
described by the far field approximation (source to detector 
separation much larger than detector dimensions) and sources 
primarily in front of the detector.  The principle energy range of 
interest for materials such as Pu + 241Am and highly enriched 
uranium (HEU) is below 500 keV.  This range also covers the 
primary range for low energy mode relative isotopic 
measurements of Pu by multi-group analysis methods.  Small 
volume LEGe detectors were once popular for such 
applications where high resolution was needed to extract 
information from the complex spectral regions.  Recently large 
volume planar detectors, so called Broad Energy Ge or BEGe 
detectors, have become available.  These offer high energy 
resolution at low energies as before but with higher efficiency 
because of solid angle and thickness.   
 
In this work it is discussed how the FEP efficiency, FEP, of such 
planar detectors may be estimated simply from the crystal 
dimensions and those of its encapsulation.   The approach may 
be used to estimate the absolute efficiency from fabrication 
information, as a means to fit absolute experimental data or to 
fit relative efficiency profiles as would be called for in relative 
isotopics analysis codes. 
 
 
BACKGROUND 
 
 
A semi-empirical approach to accurately determining FEP aims 
to represent some key energy dependencies by functions with a 
physical foundation.  In this way the general behavior can be 
captured using basic interaction data and knowledge of the 
crystal dimensions.  A benefit of this approach is that fewer 
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free parameters are required and interpolation/extrapolation can 
be done with more confidence.   
 
Consider a modified simple Any Interaction Model (AIM) 
approach [1].  The idea behind the AIM is that the total 
probability of interacting in the active detector volume can be 
evaluated using photon interaction coefficients and geometry 
information.  The remaining task is to figure out what fraction 
of those events fall into the FEP.   Intuitively we might expect 
the intrinsic FEP efficiency profile for normal incidence on a 
planar detector to be well represented by a function of the form: 
 
 ( ) ( ) ( ) ( E,t,dPe1t,E,ft,d,t,E, t
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where fgeom(Ω, E, tatt) is a function to account for losses external 
to the active crystal region (solid angle and attenuation in 
absorbers including endcap and crystal dead layer), μGe is the 
crystal mass attenuation coefficient, ρGe is the crystal density, d 
is the crystal diameter, and t is the crystal thickness.  In practice 
fgeom may be accommodated empirically by an exponential 
treatment of attenuators, perhaps with a parameterization of the 
mass attenuation coefficient energy dependence, and a 
numerical estimation of solid angle.  The (1-e- μ· ρ· t) factor 
represents the total intrinsic efficiency.  P(d, t, E) is the 
intrinsic peak-to-total ratio.  For an optically thick, large area 
(or collimated), detector one may expect P(d, t, E) to be 
insensitive to dimensions (and consequently the volume) of the 
detector.  In other words, we might be able to treat it as a 
universal function for a family of detectors which does not 
depend on the diameter, d, and thickness, t.  This is like saying 
that at low energies and for a collimated beam the back face of 
the detector plays no role.  A better approximation would 
include the dimensions of the detector.  The peak-to-total ratio 
has strong energy dependence and it is therefore vital to 
represent this behavior especially above a few hundred keV.  
The challenge addressed in this paper is how to do this in a 
simple yet accurate and practically useful way.   
 
Mowatt [1] writes that (1-Pc) might be estimated by ~ Q·e-R·E 
where Q and R need to be determined for the detector at hand 
by fitting to experimental data.  Here we prefer to keep the 
form more generally rooted to a plausible physical argument so 
that it is in principal absolute.  We borrow from Cesana and 
Terrani [2] who indicate that (1-Pc) ~ (1 - e-L·b) where L is the 
crystal mean chord (taken as representative of the characteristic 
dimension) and b is an effective linear energy transport 
coefficient for Compton scattered secondary radiation in Ge 
evaluated at the incident energy.  Some values of b(E)/4 are 
listed in reference [2] over the range 300 keV to 10 MeV.  The 
results are suggestive that b(E) can be represented by a power 
law: 
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thus, using the latter form we arrive at,  
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where APT, BPT, and CPT are characteristic coefficients to be 
determined once and for all and L is a geometry parameter 
specific to the detector. 
 
Here we consider a refinement of the AIM – what we refer to as 
the Istvan-Wally Form (IWF).  The original motivation was to 
obtain an approximate efficiency curve below 300keV for 
comparison with the functional form used in the MGA code [3, 
4], but it extends up to the pair production threshold.  If Pc is 
expressed in terms of Ge properties and dimensions of the 
detector it provides a generic, absolute, form.  However, it may 
also provide a convenient empirical fitting function, within for 
example Canberra’s Genie environment, by fitting for the free 
parameters entering into the expression.   
 
 
METHODOLOGY 
 
 
The full energy peak efficiency can be understood as consisting 
of two main components as shown in equation 5: 
 
  (5) intrinsicgeomFEP ξξξ ⋅=

 
The attenuation component can be estimated using the standard 
exponential form that includes the material density, 
thickness/path length and energy dependent mass attenuation 
coefficient.  The geometric component is also a measure of the 
solid angle as viewed from the emitting source.  Point kernel 
and Monte Carlo methods can be employed to accurately 
estimate the attenuation and geometric components.   For this 
study, with the assumption of far field geometry (our data is for 
source distance > ~ 300mm), the attenuation through the source 
encapsulation and endcap window were based on the measured 
thicknesses.  We use the mass attenuation coefficient of Ge 
without coherent scattering. Coherent scattering is excluded 
since it does not result in energy deposition.  The mass 
attenuation coefficient is a physical parameter and we can 
parameterize it any way we wish to achieve essentially arbitrary 
accuracy consistent with data evaluations.  The solid angle 
efficiency component was determined via equation 6.   
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However, the component of primary interest to this study has 
been the intrinsic efficiency component.  The intrinsic 
efficiency is the probability that all of the energy will be 
deposited once a full energy photon has entered the active 
region of the detector crystal.  In the energy region below the 
threshold for pair production, the mechanisms for full energy 
deposition include either photoelectric absorption and/or 
Compton scattering.  Photoelectric absorption can still not 
attribute to the full energy peak when subject to fluorescent x-
ray escape, primarily impacting lower energies.  The energy 
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dependent effect of such x-ray escape has been previously 
studied [5, 6] such that the photoelectric effect can be modeled 
per equation 7:   
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where μPE and μCS are the energy dependent Ge mass 
attenuation coefficients for photoelectric absorption and 
Compton scattering, respectively.  The density of germanium, 
ρGe, is 5.323 g·ml-1 and the length is the average active length of 
the crystal seen from the source.  The x-ray escape coefficients 
have been set, based on our analysis, to the values: Ax = -
13.2465, Bx = 11.3379, Cx = -3.4136, and Dx = 0.27799.  The 
effect of fluorescent x-ray escape above about 130 keV is less 
than about 0.1%.   
 
The probability that an incident full energy photon that does not 
initially interact by photoelectric absorption but still deposits 
full energy after Compton scattering must also be estimated.  
This effect is parameterized using a Compton peak-to-total 
function.  This parameterization is made a function of both the 
incident energy and the average chord length of the active 
detector volume.  As a first order approximation, this form 
assumes that the point of interaction might be anywhere in the 
active volume and the direction of scatter is more or less 
isotropic.  The form is shown in equation 8: 
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where L is the average chord length based on the active volume 
radius and length per equation 9: 
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and APT, BPT, and CPT are the peak-to-total coefficients, to be 
determined.  The mean chord length is simply being used here 
as a convenient way to capture a characteristic dimension of the 
crystal.  One can think of this dimension being used to index 
the macroscopic cross-section, b, for the scattered spectrum 
defining the escape probability.  In summary, it is proposed that 

FEP can be described per equation 10: 
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The adequacy of equation 10 was experimentally verified.  
Measurements were taken with 16 detectors, selected to 
represent the full range of expected typical HPGe planar 
detector sizes (BEGe and LEGe).  The selected detector type 
and dimensions are listed in Table 1.  All of the measurements 
were taken with a point source in front of the detector face, 
centerline.  The distance between the crystal face and source 
was well known through the use of a fixed jig.  Attenuation 
from the acrylic source matrix and endcap window was based 
on nominal manufacturer thickness values and standard 
densities.  All of the characterized planar Ge detectors have 
very little appreciable dead layer, expected to be in the range of 
15-30 μm, and was not accounted for explicitly.  However, the 
impact of this very thin attenuating dead layer affects primarily 
only low energies, is within the magnitude of measurement 
error and is accounted for implicitly by coefficient 
optimization.  Mass attenuation coefficients were determined 
using the National Institute of Standards and Technology 
(NIST) XCOM utility at the particular energies, but could also 
be separately parameterized as functions of energy.   
 

Table 1 – List of Selected HPGE Planar Detectors  

Model Window Material Radius (mm) Length (mm) 
BE2020 carbon 26.76 18.68 
BE2820 carbon 30.61 18.87 
BE2825 carbon 30.20 23.64 
BE3820 carbon 34.40 20.99 
BE3825 carbon 35.67 24.25 
BE3830 carbon 34.65 30.29 
BE5020 carbon 38.37 27.16 
BE5025 carbon 40.70 24.51 
BE5030 carbon 39.14 32.04 
GL0515 carbon 13.59 13.74 
GL1015 carbon 17.75 14.50 
GL2015 carbon 25.00 1628 
GL2020 beryllium 24.75 21.00 
GL2820 carbon 29.81 25.00 
GL2825 aluminum 29.50 25.47 
GL2830 aluminum 30.10 30.41 

 
 
RESULTS 
 
 
Figure 1 shows an example of a typical fit of the empirical 
function to measured data.  All of the geometry dimensions and 
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attenuation parameters were measured and maintained as 
constant inputs.  The three peak-to-total coefficients were then 
optimized by fitting to the measured data points (fits to a cubic 
gave no better fit).  This was done with each of the detectors.   
 
Figure 2 summarizes the results of optimizing each detector to 
respective measured efficiency data points using NIST 
traceable sources (241Am + 152Eu).  The average efficiency ratio 
for all of the data points was 0.997 ± 0.019.  For a given detector, 
the errors in the efficiency ratios using optimized coefficients did not 
seem to trend or be systematically biased with energy.  The values 
for the three peak-to-total coefficients were tallied and the 
averages were determined.  The average offset value (APT) was 
8.381, the average slope (BPT) was -2.433 and the average 
quadratic term (CPT) was 0.119.  These average values were 
then used to calculate efficiencies, with the resulting absolute 
efficiency ratios shown in Figure 3.  The average efficiency 
ratio for all of the data points was 0.999 ± 0.062.  For a given 
detector, the errors in the efficiency ratios using average coefficients 
did tend to be biased either high or low for all energies.   
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Figure 1 – Example calculated fit to measured efficiency data with 
optimized peak-to-total coefficients.  Lines included to guide the eye. 
1 standard deviation absolute experimental uncertainty bands are 
indicated.   
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Figure 2 – Efficiency ratio results with optimized peak-to-total 
coefficients.  The average efficiency ratio is 0.997 ± 0.019.   
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Figure 3 – Efficiency ratio results with average peak-to-total 
coefficients.  The average efficiency ratio is 0.999 ± 0.062.   
 
 
CONCLUSIONS 
 
 
We have presented the development of the Istvan-Wally Form, 
IWF.  Given accurate measured efficiency calibration data and 
attenuation and geometry parameters, efficiency calculations 
with accuracies within a few percent can be expected for planar 
HPGe detectors after fitting the peak-to-total coefficients, as 
was achieved in Figure 2.  However, even if no efficiency 
calibration measurements are available, results within about 
10% should be expected given accurate attenuation and 
geometry parameters while applying the average peak-to-total 
coefficients as per Figure 3.  The functional form captures the 
underlying behavior of the primary interactions below the 
threshold for pair production and consequently also provides a 
means to fit the relative efficiency curve accurately with only a 
few free parameters.  This could be of value in relative isotopic 
codes such as MGA.  Future work will include exploring 
generalizing the method to the full range of detector types and a 
higher energy range by accounting for pair production.  The use 
of the chord length introduces an approximation (weak 
attenuation) that might also be refined.  For example, the 
detector radius and thickness or aspect ratio might be included 
explicitly to partially account for angular dependency effects of 
the secondary radiation.   
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